Schizothecium vesticola SMH3187-1 v1.0
On September 25, 2017 our website will be switching from HTTP to HTTPS (Secure Protocol). If you use the Download API please add the "-L" parameter to your curl commands. Sorry for the inconvenience.
Schizothecium vesticola
Photo credit: Sandrine Cros-Arteil, INRA, Montpellier.

Schizothecium vesticola

This genome was sequenced as part of the JGI CSP 1KFG - Deep Sequencing of Ecologically-relevant Dikarya, whose goal is to fill in gaps in the Fungal Tree of Life by sequencing at least two reference genomes from the more than 500 recognized families of Fungi. This project additionally aims to inform research on plant-microbe interactions, microbial emission and capture of greenhouse gasses, and environmental metagenomic sequencing.

The sequenced Schizothecium vesticola isolate SMH3187-1 has been isolated from deer dung. Schizothecium species possess multiple large tufted perithecial hairs composed of swollen cells and ascospores with a slender pedicel (Chang, Kao et al. 2010). Schizothecium vesticola belongs to Lasiosphaeriaceae I, sensu Kruys, Huhndorf et al. (2015). Sordariales is a taxonomically rich group containing ca. 35 genera (Huhndorf, Miller et al. 2004, Kruys, Huhndorf et al. 2015), spanning more than 75 million years of association with plant biomass (Saupe, Clavé et al. 2000). Sordariales can be sampled on a range of substrates such as dung, wood, leaves, litter, burned vegetation, biological soil crusts and soil; most are saprobes, but some live in close association with plants as endophytes and few have been described as pathogens. Sordariales also exhibit striking differences in temperature requirements, ranging from mesophilic to thermophilic. Unraveling the genomic features reflecting their ability to efficiently forage their substrate will represent foundational information for understanding the role of saprophilous, lignicolous, herbicolous and coprophilous fungi in nutrient and energy flows within ecosystems. In addition, these resources will facilitate the rational design of improved thermophilic and/or biomass degrading fungal host strains, and help field studies aiming to predict responses of fungal communities to environmental changes, such as global warming.

Researchers who wish to publish analyses using data from unpublished CSP genomes are respectfully required to contact the PI and JGI to avoid potential conflicts on data use and coordinate other publications with the CSP master paper(s).

References

Chang JH, Kao HW, Wang YZ (2010) Molecular phylogeny of Cercophora, Podospora, and Schizothecium (Lasiosphaeriaceae, Pyrenomycetes)Taiwania 55: 110–116.

Huhndorf, S. M., A. N. Miller and F. A. Fernández (2004). "Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined." Mycologia 96(2): 368-387.

Kruys, Å., S. M. Huhndorf and A. N. Miller (2015). "Coprophilous contributions to the phylogeny of Lasiosphaeriaceae and allied taxa within Sordariales (Ascomycota, Fungi)." Fungal Diversity 70(1): 101-113.

Saupe, S. J., C. Clavé, M. Sabourin and J. Bégueret (2000). "Characterization of hch, the Podospora anserina homolog of the het-c heterokaryon incompatibility gene of Neurospora crassa." Current genetics 38(1): 39-47.